Australian seasonality of fruit and vegetables

As pest scientists, it is important to understand how crop seasonality overlaps with pest seasonality. But vegetable and fruit seasonality in Australia is important for a few other reasons. In season produce is cheaper, fresher, with a lower carbon footprint, compared with imported produce, due to increased local availability. In addition, different areas in Australia have different fruit production outputs e.g. high melon production in New South Wales but not in Victoria, so it is important to now what is grown near you.

Aggregation measures for pests - Taylor's power law and Iwao's patchiness

Aggregation measures for pest abundance have been widely used as summary statistics for aggregation levels as well as in designing surveillance protocols. Taylor’s power law and Iwao’s patchiness are two methods that are used most commonly. To be frank, I find the measures a little strange, particularly when they appear in papers as “cookbook statistics” (sometimes incorrectly presented) with little reference to any underpinning theory. But I managed to find some useful sources which helped to clarrify things for me.

Bayesian and frequentist approaches to binomial dose responses in R

For a given species, a simple mortality response to environmental conditions can represented with the probabilistic outcome (death), which occurs with probabilty (p). This simple process is know as a Bernoulli random variable. A motivating example is how a pest responds to increasing doses of a pesticide. Invertebrate pests cause 10-20% of yield losses in modern food systems. While cultural practices such as crop rotatation and biological control through beneficial insects increasingly form a core component of effective and sustainable management, pesticides remain a widely used tool.

Prey population growth contrained by predators

What if a growing population gets eaten by another population? In a previous post I showed why we might expect a population to grow exponentially when not resource limited. We then extended this to the case where a population reaches some carrying capacity (using a simple and non-mechanistic logistic function). But population growth can also be curtailed through interactions with another species population, such as a predator. In my area of study, we deal with a lot of herbivorous pests of agricultural systems.

Modelling density dependent population growth (logistic growth)

Let’s derive some more population growth functions! The logistic population growth function In a previous post we derived a function for population growth based on the vital rates of reproduction and mortality. We assumed that the growth rate was constant with respect to the number of individuals in the population or (\frac{dt}{dN} = rN). This led to the unrealistic prediction that populations will grow indefinitely. Of course, populations will eventually run into resource problems (e.

Unconstrained population growth

Let’s derive some population growth functions! How to grow Populations grow. They grow positively, if rates of reproduction > mortality, or negatively, if reproduction < mortality. For an unconstrained population of size (N) this diffence in per capita reproduction and mortality is referred to as the intrinsic growth rate, (r) and has the units individuals per individual per time (N.N^{-1}.t^{-1}) . The value of (r) is a constant if the age-distribution is constant (e.